skip to main content


Search for: All records

Creators/Authors contains: "Alemohammad, Milad"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    In this paper, we propose a simplified and robust model for place cell generation based on the oscillatory interference (OI) model concept. Aiming toward hardware implementation in bio-inspired simultaneous localization and mapping (SLAM) systems for mobile robotics, we base our model on logic operations that reduce its computational complexity. The model compensates for parameter variations in the behaviors of the population of constituent theta cells, and allows the theta cells to have square-wave oscillation profiles. The robustness of the model, with respect to mismatch in the theta cell’s base oscillation frequency and gain—as a function of modulatory inputs—is demonstrated. Place cell composed of 48 theta cells with base frequency variations with a 25% standard deviation from the mean and a gain error with 20% standard deviation from the mean only result in a 20% deformations within the place field and 0.24% outer side lobes, and an overall pattern with 0.0015 mean squared error on average. We also present how the model can be used to achieve the localization and path-tracking functionalities of SLAM. Hence, we propose a model for spatial cell formation using theta cells with behaviors that are biologically plausible and hardware implementable for real world application in neurally-inspired SLAM.

     
    more » « less
  2. We demonstrate a kilohertz frame rate snapshot hyperspectral imaging system suitable for high-speed imaging, which we name snapshot hyperspectral imager for emission and reactions (SHEAR). This system splits the sensor of a single high-speed camera to simultaneously capture a conventional image and a spectrally sheared response of the scene under study. Given the small, point-source-like nature of burning metal micro-particles, the spectral response of the species is captured without the need for a slit, as is needed in conventional imaging spectrometers. We pair robust image registration techniques with sparse reconstruction algorithms to computationally disentangle overlapping spectra associated with many burning particles over the course of a combustion experiment. As a proof-of-concept experiment, representative physical vapor deposited Al:Zr composite particles are ignited, and their burn evolution is recorded at a frame rate of 2 kHz using this method. We demonstrate operation over two distinct wavelength ranges spanning hundreds of nanometers in wavelength and with sub-nanometer resolution. We are able to track hundreds of individual Al:Zr particles in a single high-speed video, providing ample statistics of burn time, temperature, and AlO emission timing in a high-throughput method. The demonstrated technology is high-throughput, flexible in wavelength, inexpensive, and relatively easy to implement, and provides a much needed tool forin situcomposite metal fuel diagnostics.

     
    more » « less
  3. Most of the next-generation implantable medical devices that are targeting sub-mm scale form factors are entirely powered wirelessly. The most commonly used form of wireless power transfer for ultra-small receivers is inductive coupling and has been so for many decades. This might change with the advent of novel microfabricated magnetoelectric (ME) antennas which are showing great potential as high-frequency wireless powered receivers. In this paper, we compare these two wireless power delivery methods using receivers that operate at 2.52 GHz with a surface area of 0.043 mm2 . Measurement results show that the maximum achievable power transfer of a ME antenna outperforms that of an on-silicon coil by approximately 7 times for a Tx-Rx distance of 2.16 and 3.3 times for a Tx-Rx distance of 0.76 cm. 
    more » « less